Search results
Results From The WOW.Com Content Network
An example of a solvolysis reaction is the reaction of a triglyceride with a simple alcohol such as methanol or ethanol to give the methyl or ethyl esters of the fatty acid, as well as glycerol. This reaction is more commonly known as a transesterification reaction due to the exchange of the alcohol fragments. [2]
H 2 SO 4 + C 2 H 4 → C 2 H 5-O-SO 3 H. Subsequently, this sulphate ester is hydrolyzed to regenerate sulphuric acid and release ethanol: C 2 H 5-O-SO 3 H + H 2 O → H 2 SO 4 + C 2 H 5 OH. This two step route is called the "indirect process". In the "direct process," the acid protonates the alkene, and water reacts with this incipient ...
Ethanol is not used industrially as a precursor to ethyl halides, but the reactions are illustrative. Ethanol reacts with hydrogen halides to produce ethyl halides such as ethyl chloride and ethyl bromide via an S N 2 reaction: CH 3 CH 2 OH + HCl → CH 3 CH 2 Cl + H 2 O. HCl requires a catalyst such as zinc chloride. [116]
The sulfuric acid must be added dropwise or the reaction must be actively cooled because the reaction itself is highly exothermic. CH 3 CH 2 OH + H 2 SO 4 → CH 3 CH 2 OSO 3 H + H 2 O. If the temperature exceeds 140 °C, the ethyl sulfate product tends to react with residual ethanol starting material, producing diethyl ether.
Tertiary alcohols react with strong acids to generate carbocations. The reaction is related to their dehydration, e.g. isobutylene from tert-butyl alcohol. A special kind of dehydration reaction involves triphenylmethanol and especially its amine-substituted derivatives. When treated with acid, these alcohols lose water to give stable ...
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Generic hydrolysis reaction. (The 2-way yield symbol indicates a chemical equilibrium in which hydrolysis and condensation are reversible.). Hydrolysis (/ h aɪ ˈ d r ɒ l ɪ s ɪ s /; from Ancient Greek hydro- 'water' and lysis 'to unbind') is any chemical reaction in which a molecule of water breaks one or more chemical bonds.
Ethanol can also be used as a feedstock. This reaction is catalyzed by antimony trichloride: H 3 CCHO + 3 Cl 2 + H 2 O → Cl 3 CCH(OH) 2 + 3 HCl. The chloral hydrate is distilled from the reaction mixture. The distillate is then dehydrated with concentrated sulfuric acid, after which the heavier acid layer (containing the water) is drawn off: