Search results
Results From The WOW.Com Content Network
Echolocation, also called bio sonar, is a biological active sonar used by several animal groups, both in the air and underwater. Echolocating animals emit calls and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects.
The melon is structurally part of the nasal apparatus and comprises most of the mass tissue between the blowhole and the tip of the snout. The function of the melon is not completely understood, but scientists believe it is a bioacoustic component, providing a means of focusing sounds used in echolocation and creating a similarity between characteristics of its tissue and the surrounding water ...
Electroreceptive animals use the sense to locate objects around them. This is important in ecological niches where the animal cannot depend on vision: for example in caves, in murky water, and at night. Electrolocation can be passive, sensing electric fields such as those generated by the muscle movements of buried prey, or active, the ...
It takes place in cryptochrome molecules in cells in the birds' retinas. [4] According to the first model, magnetoreception is possible via the radical pair mechanism, [5] which is well-established in spin chemistry. The mechanism requires two molecules, each with unpaired electrons, at a suitable distance from each other.
As water is a much better electrical conductor than air, electrocommunication is only observed in aquatic animals. There are various animals that can detect electrical signals, but fish are the only aquatic animals that can both send and receive EOD, making them the only animals to effectively communicate using electrical signals.
Animal echolocation, non-human animals emitting sound waves and listening to the echo in order to locate objects or navigate. Human echolocation, the use of sound by people to navigate. Sonar (sound navigation and ranging), the use of sound on water or underwater, to navigate or to locate other watercraft, usually by submarines.
Several explanations for why cetaceans strand themselves have been proposed, including changes in water temperatures, [3] peculiarities of whales' echolocation in certain surroundings, [4] and geomagnetic disturbances, [5] but none have so far been universally accepted as a definitive reason for the behavior.
Animals rely on signals called electrolocating and echolocating; they use sensory senses in order to navigate and find prey. [22] Signals are used as a form of commutation through the environment. Active signals or other types of signals influence receivers behavior and signals move quicker in distance to reach receivers.