When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    1.2 Marginal probability density function. ... the marginal distribution of a subset of a collection of random variables is the probability distribution of the ...

  3. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    In general, the marginal probability distribution of X can be determined from the joint probability distribution of X and other random variables. If the joint probability density function of random variable X and Y is , (,), the marginal probability density function of X and Y, which defines the marginal distribution, is given by: =, (,)

  4. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    The probability density function is nonnegative everywhere, and the area under the entire curve is equal to 1. The terms probability distribution function and probability function have also sometimes been used to denote the probability density function. However, this use is not standard among probabilists and statisticians.

  5. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    when the two marginal functions and the copula density function are known, then the joint probability density function between the two random variables can be calculated, or; when the two marginal functions and the joint probability density function between the two random variables are known, then the copula density function can be calculated.

  6. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...

  7. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The law of total probability extends to the case of conditioning on events generated by continuous random variables. Let (,,) be a probability space.Suppose is a random variable with distribution function , and an event on (,,).

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    Mutual information is a measure of the inherent dependence expressed in the joint distribution of and relative to the marginal distribution of and under the assumption of independence. Mutual information therefore measures dependence in the following sense: I ⁡ ( X ; Y ) = 0 {\displaystyle \operatorname {I} (X;Y)=0} if and only if X ...

  9. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    If () is a general scalar-valued function of a normal vector, its probability density function, cumulative distribution function, and inverse cumulative distribution function can be computed with the numerical method of ray-tracing (Matlab code). [17]