Search results
Results From The WOW.Com Content Network
Electrons are affected by two thermodynamic forces [from the charge, ∇(E F /e c) where E F is the Fermi level and e c is the electron charge and temperature gradient, ∇(1/T)] because they carry both charge and thermal energy, and thus electric current j e and heat flow q are described with the thermoelectric tensors (A ee, A et, A te, and A ...
The conventional definition of the spin quantum number is s = n / 2 , where n can be any non-negative integer. Hence the allowed values of s are 0, 1 / 2 , 1, 3 / 2 , 2, etc. The value of s for an elementary particle depends only on the type of particle and cannot be altered in any known way (in contrast to the spin ...
The excitation temperature can even be negative for a system with inverted levels (such as a maser). In observations of the 21 cm line of hydrogen , the apparent value of the excitation temperature is often called the "spin temperature".
Ballistic electrons behave like light in a waveguide or a high-quality optical assembly. Non-ballistic electrons behave like light diffused in milk or reflected off a white wall or a piece of paper. Electrons can be scattered several ways in a conductor. Electrons have several properties: wavelength (energy), direction, phase, and spin orientation.
[5] In fact, if the ground-state energy behaves proportional to for some , then pouring two glasses of water would provide an energy proportional to () = (), which is enormous for large . A system is called stable of the second kind or thermodynamically stable when the free energy is bounded from below by a linear function of N {\displaystyle N} .
The spin Nernst effect is a phenomenon of spin current generation caused by the thermal flow of electrons or magnons in condensed matter. Under a thermal drive such as temperature gradient or chemical potential gradient, spin-up and spin-down carriers can flow perpendicularly to the thermal current and towards opposite directions without the application of a magnetic field.
The combined effect of the two operators is therefore to propagate the rotated spin to a new position, which is a hint that the correct eigenstate is a spin wave, namely a superposition of states with one reduced spin. The exchange energy penalty associated with changing the orientation of one spin is reduced by spreading the disturbance over a ...
The most common way to induce a spin transition is to change the temperature of the system: the transition will be then characterized by a = (), where is the molar fraction of molecules in high-spin state. Several techniques are currently used to obtain such curves.