When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    Many constrained optimization algorithms can be adapted to the unconstrained case, often via the use of a penalty method. However, search steps taken by the unconstrained method may be unacceptable for the constrained problem, leading to a lack of convergence. This is referred to as the Maratos effect. [3]

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...

  4. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    A penalty method replaces a constrained optimization problem by a series of unconstrained problems whose solutions ideally converge to the solution of the original constrained problem. The unconstrained problems are formed by adding a term, called a penalty function, to the objective function that consists of a penalty parameter multiplied by a ...

  5. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used. If the objective function is a ratio of a concave and a convex function (in the maximization case) and the constraints are convex, then the problem can be transformed to a convex optimization problem using fractional programming ...

  6. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    One can ask whether a minimizer point of the original, constrained optimization problem (assuming one exists) has to satisfy the above KKT conditions. This is similar to asking under what conditions the minimizer x ∗ {\displaystyle x^{*}} of a function f ( x ) {\displaystyle f(x)} in an unconstrained problem has to satisfy the condition ∇ f ...

  7. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v, an optimization problem might be "find a path from u to v that uses the fewest edges". This problem might have ...

  8. Broyden–Fletcher–Goldfarb–Shanno algorithm - Wikipedia

    en.wikipedia.org/wiki/Broyden–Fletcher...

    In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving unconstrained nonlinear optimization problems. [1] Like the related Davidon–Fletcher–Powell method, BFGS determines the descent direction by preconditioning the gradient with curvature information.

  9. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    As the equality constraints are all linear, they can be eliminated with linear algebra and integrated into the objective, thus converting an equality-constrained problem into an unconstrained one. In the class of unconstrained (or equality-constrained) problems, the simplest ones are those in which the objective is quadratic.