When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kröger–Vink notation - Wikipedia

    en.wikipedia.org/wiki/Kröger–Vink_Notation

    For example, the defect may result in an ion on its own ion site or a vacancy on the cation site. To complete the reactions, the proper number of each ion must be present (mass balance), an equal number of sites must exist (site balance), and the sums of the charges of the reactants and products must also be equal (charge balance).

  3. RICE chart - Wikipedia

    en.wikipedia.org/wiki/RICE_chart

    This follows from consideration of mass balance (the total number of each atom/molecule must remain the same) and charge balance (the sum of the electric charges before and after the reaction must be zero). Note that the coefficients in front of the "x" correlate to the mole ratios of the reactants to the product.

  4. Ionic strength - Wikipedia

    en.wikipedia.org/wiki/Ionic_strength

    The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.

  5. COSMO-RS - Wikipedia

    en.wikipedia.org/wiki/COSMO-RS

    COSMO-RS (short for COnductor like Screening MOdel for Real Solvents) [1] [2] [3] is a quantum chemistry based equilibrium thermodynamics method with the purpose of predicting chemical potentials μ in liquids. It processes the screening charge density σ on the surface of molecules to calculate the chemical potential μ of each species in ...

  6. Arrow pushing - Wikipedia

    en.wikipedia.org/wiki/Arrow_pushing

    Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson.In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism.

  7. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    Acid dissociation constants are also essential in aquatic chemistry and chemical oceanography, where the acidity of water plays a fundamental role. In living organisms, acid–base homeostasis and enzyme kinetics are dependent on the p K a values of the many acids and bases present in the cell and in the body.

  8. Formal charge - Wikipedia

    en.wikipedia.org/wiki/Formal_charge

    Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.

  9. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    At equilibrium, the chemical force driving the forward reaction must be equal to the chemical force driving the reverse reaction. Writing the initial active masses of A,B, A' and B' as p, q, p' and q' and the dissociated active mass at equilibrium as ξ {\displaystyle \xi } , this equality is represented by