Ad
related to: integer word problems pdf
Search results
Results From The WOW.Com Content Network
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
The problem of determining if a given set of Wang tiles can tile the plane. The problem of determining the Kolmogorov complexity of a string. Hilbert's tenth problem: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers.
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
The word integer comes from the Latin integer meaning "whole" or (literally) "untouched", from in ("not") plus tangere ("to touch"). "Entire" derives from the same origin via the French word entier, which means both entire and integer. [9] Historically the term was used for a number that was a multiple of 1, [10] [11] or to the whole part of a ...
Rational numbers (): Numbers that can be expressed as a ratio of an integer to a non-zero integer. [3] All integers are rational, but there are rational numbers that are not integers, such as −2/9. Real numbers (): Numbers that correspond to points along a line. They can be positive, negative, or zero.
Archimedes's cattle problem (or the problema bovinum or problema Archimedis) is a problem in Diophantine analysis, the study of polynomial equations with integer solutions. Attributed to Archimedes , the problem involves computing the number of cattle in a herd of the sun god from a given set of restrictions.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
In mathematics, Sophie Germain's identity is a polynomial factorization named after Sophie Germain stating that + = ((+) +) (() +) = (+ +) (+). Beyond its use in elementary algebra, it can also be used in number theory to factorize integers of the special form +, and it frequently forms the basis of problems in mathematics competitions.