Search results
Results From The WOW.Com Content Network
In object-oriented programming, "immutable interface" is a pattern for designing an immutable object. [1] The immutable interface pattern involves defining a type which does not provide any methods which mutate state. Objects which are referenced by that type are not seen to have any mutable state, and appear immutable.
In object-oriented (OO) and functional programming, an immutable object (unchangeable [1] object) is an object whose state cannot be modified after it is created. [2] This is in contrast to a mutable object (changeable object), which can be modified after it is created. [ 3 ]
In C#, a class is a reference type while a struct (concept derived from the struct in C language) is a value type. [5] Hence an instance derived from a class definition is an object while an instance derived from a struct definition is said to be a value object (to be precise a struct can be made immutable to represent a value object declaring attributes as readonly [6]).
Final variables can be used to construct trees of immutable objects. Once constructed, these objects are guaranteed not to change anymore. To achieve this, an immutable class must only have final fields, and these final fields may only have immutable types themselves. Java's primitive types are immutable, as are strings and several other classes.
Primitive wrapper classes are not the same thing as primitive types. Whereas variables, for example, can be declared in Java as data types double, short, int, etc., the primitive wrapper classes create instantiated objects and methods that inherit but hide the primitive data types, not like variables that are assigned the data type values.
This example uses a String as the state, which is an immutable object in Java. In real-life scenarios the state will almost always be a mutable object, in which case a copy of the state must be made. It must be said that the implementation shown has a drawback: it declares an internal class.
But, unlike C++, Java doesn't create a default copy constructor if you don't write your own. Copy constructors define the actions performed by the compiler when copying class objects. A Copy constructor has one formal parameter that is the type of the class (the parameter may be a reference to an object).
One example is mutability: whether the objects storing extrinsic flyweight state can change. Immutable objects are easily shared, but require creating new extrinsic objects whenever a change in state occurs. In contrast, mutable objects can share state. Mutability allows better object reuse via the caching and re-initialization of old, unused ...