Ad
related to: statics engineering example problems
Search results
Results From The WOW.Com Content Network
The first nine blocks in the solution to the single-wide block-stacking problem with the overhangs indicated. In statics, the block-stacking problem (sometimes known as The Leaning Tower of Lire (Johnson 1955), also the book-stacking problem, or a number of other similar terms) is a puzzle concerning the stacking of blocks at the edge of a table.
Statics is used in the analysis of structures, for instance in architectural and structural engineering. Strength of materials is a related field of mechanics that relies heavily on the application of static equilibrium. A key concept is the center of gravity of a body at rest: it represents an imaginary point at which all the mass of a body ...
(It may be necessary to calculate the stress to which it is subjected, for example.) On the right, the red cylinder has become the free body. In figure 2, the interest has shifted to just the left half of the red cylinder and so now it is the free body on the right. The example illustrates the context sensitivity of the term "free body".
In statics and structural mechanics, a structure is statically indeterminate when the equilibrium equations – force and moment equilibrium conditions – are insufficient for determining the internal forces and reactions on that structure.
For example, in the case of design for fire a load case of 1.0 x Dead Load + 0.8 x Live Load may be used, as it is reasonable to assume everyone has left the building if there is a fire. In multi-story buildings it is normal to reduce the total live load depending on the number of stories being supported, as the probability of maximum load ...
The problem of compatibility in continuum mechanics involves the determination of allowable single-valued continuous fields on simply connected bodies. More precisely, the problem may be stated in the following manner. [5] Figure 1. Motion of a continuum body. Consider the deformation of a body shown in Figure 1.
In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.
The two important examples are (i) the internal forces in a rigid body, and (ii) the constraint forces at an ideal joint. Lanczos [1] presents this as the postulate: "The virtual work of the forces of reaction is always zero for any virtual displacement which is in harmony with the given kinematic constraints." The argument is as follows.