Search results
Results From The WOW.Com Content Network
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1] Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles.
In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.
The tesseract is one of 6 convex regular 4-polytopes. In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope.They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.
A four-dimensional orthotope is likely a hypercuboid. [7]The special case of an n-dimensional orthotope where all edges have equal length is the n-cube or hypercube. [2]By analogy, the term "hyperrectangle" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.
In dimension 2 these groups completely describe the hyperoctahedral group, which is the dihedral group Dih 4 of order 8, and is an extension 2.V (of the 4-group by a cyclic group of order 2). In general, passing to the subquotient (derived subgroup, mod center) is the symmetry group of the projective demihypercube.
The 16-cell is the second in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). [a]Each of its 4 successor convex regular 4-polytopes can be constructed as the convex hull of a polytope compound of multiple 16-cells: the 16-vertex tesseract as a compound of two 16-cells, the 24-vertex 24-cell as a compound of three 16-cells, the 120-vertex 600-cell as a compound of ...
In graph theory, the hypercube graph Q n is the graph formed from the vertices and edges of an n-dimensional hypercube. For instance, the cube graph Q 3 is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. Q n has 2 n vertices, 2 n – 1 n edges, and is a regular graph with n edges touching each vertex.