When.com Web Search

  1. Ad

    related to: isosceles right triangle area problems pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.

  3. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, ⁠ π / 2 ⁠ radians) and two other congruent angles each measuring half of a right angle (45°, or ...

  4. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is T = b h / 2 , {\displaystyle T=bh/2,} where b is the length of the base of the triangle, and h is the height or altitude of the triangle.

  5. Bernoulli quadrisection problem - Wikipedia

    en.wikipedia.org/.../Bernoulli_quadrisection_problem

    The triangle shown is the unique isosceles triangle for which there are exactly two perpendicular quadrisections. [ 1 ] In triangle geometry , the Bernoulli quadrisection problem asks how to divide a given triangle into four equal-area pieces by two perpendicular lines.

  6. Circle packing in an isosceles right triangle - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_an...

    Solutions to the equivalent problem of maximizing the minimum distance between n points in an isosceles right triangle, were known to be optimal for n < 8 [2] and were extended up to n = 10. [3] In 2011 a heuristic algorithm found 18 improvements on previously known optima, the smallest of which was for n = 13. [4]

  7. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  8. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    To convert between these two formulations of the problem, the square side for unit circles will be = + /. The optimal packing of 15 circles in a square Optimal solutions have been proven for n ≤ 30. Packing circles in a rectangle; Packing circles in an isosceles right triangle - good estimates are known for n < 300.

  9. Spiral of Theodorus - Wikipedia

    en.wikipedia.org/wiki/Spiral_of_Theodorus

    The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.