Search results
Results From The WOW.Com Content Network
A series is convergent (or converges) if and only if the sequence (,,, … ) {\displaystyle (S_{1},S_{2},S_{3},\dots )} of its partial sums tends to a limit ; that means that, when adding one a k {\displaystyle a_{k}} after the other in the order given by the indices , one gets partial sums that become closer and closer to a given number.
In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2]
The definition of convergence in distribution may be extended from random vectors to more general random elements in arbitrary metric spaces, and even to the “random variables” which are not measurable — a situation which occurs for example in the study of empirical processes. This is the “weak convergence of laws without laws being ...
The plot of a convergent sequence (a n) is shown in blue. From the graph we can see that the sequence is converging to the limit zero as n increases. An important property of a sequence is convergence. If a sequence converges, it converges to a particular value known as the limit. If a sequence converges to some limit, then it is convergent.
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if
The sequence of partial sums obtained by grouping is a subsequence of the partial sums of the original series. The convergence of each absolutely convergent series is an equivalent condition for a normed vector space to be Banach (i.e.: complete).
Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound for a series or for the absolute values of its terms is an effective way to prove convergence or absolute convergence of a series.