Search results
Results From The WOW.Com Content Network
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
A subadditive function is a function:, having a domain A and an ordered codomain B that are both closed under addition, with the following property: ,, (+) + ().. An example is the square root function, having the non-negative real numbers as domain and codomain: since , we have: + +.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The input and output domains may be the same, such as for SUM, or may be different, such as for COUNT. Aggregate functions occur commonly in numerous programming languages, in spreadsheets, and in relational algebra. The listagg function, as defined in the SQL:2016 standard [2] aggregates data from multiple rows into a single concatenated string.
Square and Nth root of a number: Alpha max plus beta min algorithm: an approximation of the square-root of the sum of two squares; Methods of computing square roots; nth root algorithm; Summation: Binary splitting: a divide and conquer technique which speeds up the numerical evaluation of many types of series with rational terms
Legendre's three-square theorem states which numbers can be expressed as the sum of three squares; Jacobi's four-square theorem gives the number of ways that a number can be represented as the sum of four squares. For the number of representations of a positive integer as a sum of squares of k integers, see Sum of squares function.
In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer n as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different.