When.com Web Search

  1. Ad

    related to: dimensional formula of torque force

Search results

  1. Results From The WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    Torque has the dimension of force times distance, symbolically T −2 L 2 M and those fundamental dimensions are the same as that for energy or work. Official SI literature indicates newton-metre , is properly denoted N⋅m, as the unit for torque; although this is dimensionally equivalent to the joule , which is the unit of energy, the latter ...

  3. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    This resultant force and torque is obtained by choosing one of the particles in the system as a reference point, R, where each of the external forces are applied with the addition of an associated torque. The resultant force F and torque T are given by the formulas, = =, = = (), where R i is the vector that defines the position of particle P i.

  4. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

  5. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude of the force; d is the perpendicular distance (moment) between the two parallel forces

  6. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Torque: τ: Product of a force and the perpendicular distance of the force from the point about which it is exerted newton-metre (N⋅m) L 2 M T −2: bivector (or pseudovector in 3D) Velocity: v →: Moved distance per unit time: the first time derivative of position m/s L T −1: vector Wavevector: k →

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    [18]: 14–15 The torque can vanish even when the force is non-zero, if the body is located at the reference point (=) or if the force and the displacement vector are directed along the same line. The angular momentum of a collection of point masses, and thus of an extended body, is found by adding the contributions from each of the points.

  8. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    The force and torque vectors that arise in applying Newton's laws to a rigid body can be assembled into a screw called a wrench. A force has a point of application and a line of action, therefore it defines the Plücker coordinates of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line ...

  9. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is. where M is the applied torques and I is the inertia matrix.