When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nilpotent matrix - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_matrix

    nilpotent matrix is always less than or equal to. n {\displaystyle n} For example, every. 2 × 2 {\displaystyle 2\times 2} nilpotent matrix squares to zero. The determinant and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible. The only nilpotent diagonalizable matrix is the zero matrix.

  3. Nilpotent - Wikipedia

    en.wikipedia.org/wiki/Nilpotent

    Nilpotent. In mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index (or sometimes the degree), such that . The term, along with its sister idempotent, was introduced by Benjamin Peirce in the context of his work on the classification of algebras. [1]

  4. Nilpotent operator - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_operator

    The Volterra operator is the corresponding integral operator T on the Hilbert space L2 (0,1) given by. The operator T is not nilpotent: take f to be the function that is 1 everywhere and direct calculation shows that Tn f ≠ 0 (in the sense of L2) for all n. However, T is quasinilpotent. First notice that K is in L2 (X, m), therefore T is compact.

  5. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.

  6. Nilpotent orbit - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_orbit

    Nilpotent orbits are finite in number. The Zariski closure of a nilpotent orbit is a union of nilpotent orbits. Jacobson–Morozov theorem: over a field of characteristic zero, any nilpotent element e can be included into an sl 2-triple {e,h,f} and all such triples are conjugate by Z G (e), the centralizer of e in G.

  7. Jordan–Chevalley decomposition - Wikipedia

    en.wikipedia.org/wiki/Jordan–Chevalley...

    In mathematics, specifically linear algebra, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator in a unique way as the sum of two other linear operators which are simpler to understand. Specifically, one part is potentially diagonalisable and the other is nilpotent.

  8. Nilpotent Lie algebra - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_Lie_algebra

    In mathematics, a Lie algebra is nilpotent if its lower central series terminates in the zero subalgebra. The lower central series is the sequence of subalgebras. We write , and for all . If the lower central series eventually arrives at the zero subalgebra, then the Lie algebra is called nilpotent. The lower central series for Lie algebras is ...

  9. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    Minimal polynomial (linear algebra) In linear algebra, the minimal polynomial μA of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μA. The following three statements are equivalent: λ is a root of μA, λ is a root of ...