Search results
Results From The WOW.Com Content Network
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].
Oxidative phosphorylation produces 26 of the 30 equivalents of ATP generated in cellular respiration by transferring electrons from NADH or FADH2 to O 2 through electron carriers. [10] The energy released when electrons are passed from higher-energy NADH or FADH2 to the lower-energy O 2 is required to phosphorylate ADP and once again generate ...
The equation for the reaction of glucose to form lactic acid is: C 6 H 12 O 6 + 2 ADP + 2 P i → 2 CH 3 CH(OH)COOH + 2 ATP + 2 H 2 O. Anaerobic respiration is respiration in the absence of O 2. Prokaryotes can utilize a variety of electron acceptors. These include nitrate, sulfate, and carbon dioxide.
Chemical formula. C 23 H 38 N 7 O 17 P 3 S: Molar mass: 809.57 g·mol −1 ... In cellular respiration; Citric acid cycle: Through a series of chemical reactions, ...
Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
Cellular waste products are formed as a by-product of cellular respiration, a series of processes and reactions that generate energy for the cell, in the form of ATP. One example of cellular respiration creating cellular waste products are aerobic respiration and anaerobic respiration .
Triphenyl tetrazolium chloride (TTC), or simply tetrazolium chloride (with the formula 2,3,5-triphenyl-2H-tetrazolium chloride) is a redox indicator commonly used in biochemical experiments especially to indicate cellular respiration. It is a white crystalline powder, soluble in water, ethanol and acetone but insoluble in ether.