Search results
Results From The WOW.Com Content Network
During G 2, the cell undergoes the final stages of growth before it enters the M phase, where spindles are synthesized. The M phase can be either mitosis or meiosis depending on the type of cell. Germ cells, or gametes, undergo meiosis, while somatic cells will undergo mitosis. After the cell proceeds successfully through the M phase, it may ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 5 January 2025. Cell division producing haploid gametes For the figure of speech, see Meiosis (figure of speech). For the process whereby cell nuclei divide to produce two copies of themselves, see Mitosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 19 December 2024. Process in which chromosomes are replicated and separated into two new identical nuclei For the type of cell division in sexually reproducing organisms used to produce gametes, see Meiosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
Mitosis is the normal process in eukaryotes for cell division; duplicating chromosomes and segregating one of the two copies into each of the two daughter cells, in contrast with meiosis. The mitosis theory states that meiosis evolved from mitosis. [9]
The cycles differ in when mitosis (growth) occurs. Zygotic meiosis and gametic meiosis have one mitotic stage: mitosis occurs during the n phase in zygotic meiosis and during the 2n phase in gametic meiosis. Therefore, zygotic and gametic meiosis are collectively termed "haplobiontic" (single mitotic phase, not to be confused with haplontic).
These spores then germinate and divide by mitosis to form a haploid multicellular phase, the gametophyte, which produces gametes directly by mitosis. This type of life cycle, involving alternation between two multicellular phases, the sexual haploid gametophyte and asexual diploid sporophyte, is known as alternation of generations.
Telophase (from Ancient Greek τέλος 'end, result, completion' and φάσις (phásis) 'appearance') is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase (the nucleolus and nuclear membrane disintegrating) are reversed.