When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is. where M is the applied torques and I is the inertia matrix.

  3. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    v. t. e. Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession.

  4. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two ...

  5. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relative to a rotational axis. It is the ratio between the torque applied and the resulting angular acceleration about that axis.

  6. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...

  7. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    They constitute a mixed axes of rotation system, where the first angle moves the line of nodes around the external axis z, the second rotates around the line of nodes N and the third one is an intrinsic rotation around Z, an axis fixed in the body that moves. The static definition implies that: α (precession) represents a rotation around the z ...

  8. Rotation - Wikipedia

    en.wikipedia.org/wiki/Rotation

    Rotation. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation. A solid figure has an infinite number ...

  9. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.