Search results
Results From The WOW.Com Content Network
Statistical significance dates to the 18th century, in the work of John Arbuthnot and Pierre-Simon Laplace, who computed the p-value for the human sex ratio at birth, assuming a null hypothesis of equal probability of male and female births; see p-value § History for details.
Statistical significance test: A predecessor to the statistical hypothesis test (see the Origins section). An experimental result was said to be statistically significant if a sample was sufficiently inconsistent with the (null) hypothesis. This was variously considered common sense, a pragmatic heuristic for identifying meaningful experimental ...
Statistics rarely give a simple Yes/No type answer to the question under analysis. Interpretation often comes down to the level of statistical significance applied to the numbers and often refers to the probability of a value accurately rejecting the null hypothesis (sometimes referred to as the p-value).
In his highly influential book Statistical Methods for Research Workers (1925), Fisher proposed the level p = 0.05, or a 1 in 20 chance of being exceeded by chance, as a limit for statistical significance, and applied this to a normal distribution (as a two-tailed test), thus yielding the rule of two standard deviations (on a normal ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test ...
The confidence interval can be expressed in terms of statistical significance, e.g.: "The 95% confidence interval represents values that are not statistically significantly different from the point estimate at the .05 level." [20] Interpretation of the 95% confidence interval in terms of statistical significance.
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...