Ad
related to: little raised 2 for cubed power of 3 minus 8
Search results
Results From The WOW.Com Content Network
y = x 3 for values of 1 ≤ x ≤ 25.. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8.
Also unlike addition and multiplication, exponentiation is not associative: for example, (2 3) 2 = 8 2 = 64, whereas 2 (3 2) = 2 9 = 512. Without parentheses, the conventional order of operations for serial exponentiation in superscript notation is top-down (or right -associative), not bottom-up [ 25 ] [ 26 ] [ 27 ] (or left -associative).
For example, in the quaternions, a real number has infinitely many cube roots. Plot of y = 3 √ x. The plot is symmetric with respect to origin, as it is an odd function. At x = 0 this graph has a vertical tangent. A unit cube (side = 1) and a cube with twice the volume (side = 3 √ 2 = 1.2599... OEIS: A002580).
[8] [9] In programming languages such as Ada, [10] Fortran, [11] Perl, [12] Python [13] and Ruby, [14] a double asterisk is used, so x 2 is written as x ** 2. The plus–minus sign , ±, is used as a shorthand notation for two expressions written as one, representing one expression with a plus sign, the other with a minus sign.
If the perfect cube ends in 7, the cube root of it must end in 3. If the perfect cube ends in 8, the cube root of it must end in 2. If the perfect cube ends in 9, the cube root of it must end in 9. Note that every digit corresponds to itself except for 2, 3, 7 and 8, which are just subtracted from ten to obtain the corresponding digit.
Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.
In mathematics, high superscripts are used for exponentiation to indicate that one number or variable is raised to the power of another number or variable. Thus y 4 is y raised to the fourth power, 2 x is 2 raised to the power of x , and the equation E = mc 2 includes a term for the speed of light squared .
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.