Search results
Results From The WOW.Com Content Network
This data structure consists of two lists, one containing all the intervals sorted by their beginning points, and another containing all the intervals sorted by their ending points. The result is a binary tree with each node storing: A center point; A pointer to another node containing all intervals completely to the left of the center point
Read-only data types (sources) can be covariant; write-only data types (sinks) can be contravariant. Mutable data types which act as both sources and sinks should be invariant. To illustrate this general phenomenon, consider the array type. For the type Animal we can make the type Animal [], which is an "array of animals". For the purposes of ...
In computer science, a 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that can be used to implement dictionaries. The numbers mean a tree where every node with children (internal node) has either two, three, or four child nodes: a 2-node has one data element, and if internal has two child nodes;
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations.CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods.
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
Structured Programming: Theory and Practice Computer Graphics: Principles and Practice is a textbook written by James D. Foley , Andries van Dam , Steven K. Feiner , John Hughes , Morgan McGuire, David F. Sklar, and Kurt Akeley and published by Addison–Wesley .
The first and last nodes of a doubly linked list for all practical applications are immediately accessible (i.e., accessible without traversal, and usually called head and tail) and therefore allow traversal of the list from the beginning or end of the list, respectively: e.g., traversing the list from beginning to end, or from end to beginning, in a search of the list for a node with specific ...