When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    Laguerre's method may even converge to a complex root of the polynomial, because the radicand of the square root may be of a negative number, in the formula for the correction, , given above – manageable so long as complex numbers can be conveniently accommodated for the calculation. This may be considered an advantage or a liability ...

  3. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    It follows from the present theorem and the fundamental theorem of algebra that if the degree of a real polynomial is odd, it must have at least one real root. [2] This can be proved as follows. Since non-real complex roots come in conjugate pairs, there are an even number of them; But a polynomial of odd degree has an odd number of roots;

  4. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Methods for finding all complex roots, such as Aberth method can provide the real roots. However, because of the numerical instability of polynomials (see Wilkinson's polynomial), they may need arbitrary-precision arithmetic for deciding which roots are real. Moreover, they compute all complex roots when only few are real.

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  6. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    In numerical analysis, Bairstow's method is an efficient algorithm for finding the roots of a real polynomial of arbitrary degree. The algorithm first appeared in the appendix of the 1920 book Applied Aerodynamics by Leonard Bairstow. [1] [non-primary source needed] The algorithm finds the roots in complex conjugate pairs using only real ...

  7. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    The solutions of the system are in one-to-one correspondence with the roots of h and the multiplicity of each root of h equals the multiplicity of the corresponding solution. The solutions of the system are obtained by substituting the roots of h in the other equations. If h does not have any multiple root then g 0 is the derivative of h.

  8. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    A quadratic with two real roots, for example, will have exactly two angles that satisfy the above conditions. For complex roots, one also needs to find a series of similar triangles, but with the vertices of the root path displaced from the polynomial path by a distance equal to the imaginary part of the root. In this case the root path will ...

  9. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    For defining this starting interval, one may use bounds on the size of the roots (see Properties of polynomial roots § Bounds on (complex) polynomial roots). Then, one divides this interval in two, by choosing c in the middle of ( a , b ] . {\displaystyle (a,b].}