Search results
Results From The WOW.Com Content Network
A shunt is a device that is designed to provide a low-resistance path for an electrical current in a circuit. It is typically used to divert current away from a system or component in order to prevent overcurrent .
A circuit diagram (or: wiring diagram, electrical diagram, elementary diagram, electronic schematic) is a graphical representation of an electrical circuit. A pictorial circuit diagram uses simple images of components, while a schematic diagram shows the components and interconnections of the circuit using standardized symbolic representations.
An automotive wiring diagram, showing useful information such as crimp connection locations and wire colors. These details may not be so easily found on a more schematic drawing. A wiring diagram is a simplified conventional pictorial representation of an electrical circuit. It shows the components of the circuit as simplified shapes, and the ...
A shunt-trip unit appears similar to a normal breaker and the moving actuators are ganged to a normal breaker mechanism to operate together in a similar way, but the shunt trip is a solenoid intended to be operated by an external constant-voltage signal, rather than a current, commonly the local mains voltage or DC. These are often used to cut ...
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Generator separately excited by battery Self exciting generators Series on left, shunt on right. A shunt generator is a type of electric generator in which field winding and armature winding are connected in parallel, and in which the armature supplies both the load current and the field current for the excitation (generator is therefore self excited).
Shunt reactors are used in power systems to counteract the effect of the line parasitic capacitance, thereby stabilizing the system voltage within acceptable limits. [1] The utility of shunt reactors for voltage control on lightly-loaded transmission lines was examined in a 1926 paper presented at the AIEE by Edith Clarke . [ 2 ]
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.