Search results
Results From The WOW.Com Content Network
If n = 1 and a and b are both 0 or 1/2, then the functions θ a,b (τ,z) are the four Jacobi theta functions, and the functions θ a,b (τ,0) are the classical Jacobi theta constants. The theta constant θ 1/2,1/2 (τ,0) is identically zero, but the other three can be nonzero.
There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has a positive ...
In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions.The identities were first discovered and proved by Leonard James Rogers (), and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913.
In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta.
theta functions; the angle of a scattered photon during a Compton scattering interaction; the angular displacement of a particle rotating about an axis; the Watterson estimator in population genetics; the thermal resistance between two bodies; ϑ ("script theta"), the cursive form of theta, often used in handwriting, represents
theta: angular displacement: radian (rad) kappa: torsion coefficient also called torsion constant newton meter per radian (N⋅m/rad) lambda: cosmological constant: per second squared (s −2) wavelength: meter (m) linear charge density: coulomb per meter (C/m) eigenvalue: non-zero vector
In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined.
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides.