Search results
Results From The WOW.Com Content Network
The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is
Unfortunately, most programming languages make the latter much easier to write (X % r), so it is very commonly used. The generator is not sensitive to the choice of c, as long as it is relatively prime to the modulus (e.g. if m is a power of 2, then c must be odd), so the value c=1 is commonly chosen.
The problem here is that the low-order bits of a linear congruential PRNG with modulo 2 e are less random than the high-order ones: [6] the low n bits of the generator themselves have a period of at most 2 n. When the divisor is a power of two, taking the remainder essentially means throwing away the high-order bits, such that one ends up with ...
Random Cycle Bit Generator (RCB) 2016 R. Cookman [33] RCB is described as a bit pattern generator made to overcome some of the shortcomings with Mersenne Twister and short periods/bit length restriction of shift/modulo generators. Middle-Square Weyl Sequence RNG (see also middle-square method) 2017 B. Widynski [34] [35]
RS: A random (input-dependent) shift, for cases where rotates are more expensive. Again, the output is half the size of the input. Beginning with a 2 b -bit input word, the top b −3 bits are used for a shift amount, which is applied to the next-most-significant 2 b −1 +2 b −3 −1 bits, and the least significant 2 b −1 bits of the ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − 47⋅17 = 1, so R′ = 8. Multiply 12 by 8 to get 96 and reduce modulo 17 to get 11. This is the Montgomery form of 3, as expected.
Dixon's method is based on finding a congruence of squares modulo the integer N which is intended to factor. Fermat's factorization method finds such a congruence by selecting random or pseudo-random x values and hoping that the integer x 2 mod N is a perfect square (in the integers):