When.com Web Search

  1. Ad

    related to: arithmetic series in real life

Search results

  1. Results From The WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...

  3. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    When every term of a series is a non-negative real number, for instance when the terms are the absolute values of another series of real numbers or complex numbers, the sequence of partial sums is non-decreasing. Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound ...

  4. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  5. Portal:Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Portal:Arithmetic

    An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L -function, and some important conjectures involving L -functions are the Riemann hypothesis and its generalizations .

  6. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Unlike rational number arithmetic, real number arithmetic is closed under exponentiation as long as it uses a positive number as its base. The same is true for the logarithm of positive real numbers as long as the logarithm base is positive and not 1. [105] Irrational numbers involve an infinite non-repeating series of decimal digits.

  7. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It is in Babylonian mathematics that elementary arithmetic (addition, subtraction, multiplication, and division) first

  8. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms. As a third equivalent characterization, it is an infinite sequence of the form 1 a , 1 a + d , 1 a + 2 d , 1 a + 3 d , ⋯ , {\displaystyle {\frac {1}{a}},\ {\frac {1}{a+d}},\ {\frac {1}{a+2d}},\ {\frac {1}{a+3d}},\cdots ,}

  9. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    In modern mathematics, the sum of an infinite series is defined to be the limit of the sequence of its partial sums, if it exists. The sequence of partial sums of Grandi's series is 1, 0, 1, 0, ..., which clearly does not approach any number (although it does have two accumulation points at 0 and 1). Therefore, Grandi's series is divergent