Search results
Results From The WOW.Com Content Network
The sum of the entries in the last column (b 2) is the sum of squared distances between the measured sample mean and the correct population mean Every single row now consists of pairs of a 2 (biased, because the sample mean is used) and b 2 (correction of bias, because it takes the difference between the "real" population mean and the ...
which is an unbiased estimator of the variance of the mean in terms of the observed sample variance and known quantities. If the autocorrelations are identically zero, this expression reduces to the well-known result for the variance of the mean for independent data. The effect of the expectation operator in these expressions is that the ...
The following is Yates's corrected version of Pearson's chi-squared statistics: = = (| |) where: O i = an observed frequency E i = an expected (theoretical) frequency, asserted by the null hypothesis N = number of distinct events
Small samples are somewhat more likely to underestimate the population standard deviation and have a mean that differs from the true population mean, and the Student t-distribution accounts for the probability of these events with somewhat heavier tails compared to a Gaussian.
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.