Search results
Results From The WOW.Com Content Network
The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863. The flow field associated with the trochoidal wave is not irrotational: it has vorticity.
To good approximation, the flow velocity oscillations are irrotational outside the boundary layer, and potential flow theory can be applied to the oscillatory part of the motion. This significantly simplifies the solution of these flow problems, and is often applied in the irrotational flow regions of sound waves and water waves.
A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]
Much like the familiar oceanic waves, waves described by the Euler Equations 'break' and so-called shock waves are formed; this is a nonlinear effect and represents the solution becoming multi-valued. Physically this represents a breakdown of the assumptions that led to the formulation of the differential equations, and to extract further ...
The flow profiles was first derived by John R. Womersley (1907–1958) in his work with blood flow in arteries. [1] The cardiovascular system of chordate animals is a very good example where pulsatile flow is found, but pulsatile flow is also observed in engines and hydraulic systems, as a result of rotating mechanisms pumping the fluid.
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.
This parcel is in an environment of other water or gas particles where the density of the environment is a function of height: = (). If the parcel is displaced by a small vertical increment z ′ {\displaystyle z'} , and it maintains its original density so that its volume does not change, it will be subject to an extra gravitational force ...