Search results
Results From The WOW.Com Content Network
The stronger magnetic fields can be hazardous to mechanical and electronic devices, as they can erase magnetic media such as floppy disks and credit cards, and magnetize watches and the shadow masks of CRT-type monitors at a greater distance than other types of magnet.
This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.. The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface).
The AlNiCo technically have a slightly stronger field (specifically, increased magnetic flux density), but they become demagnetized easily in the presence of other magnetic fields. Because NdFeB magnets have comparable strength and do not demagnetize as easily, they have largely replaced AlNiCo magnets, especially in applications where there is ...
N52 (Long Island bus) BMW N52, an automobile engine; HMS Trident (N52), a submarine of the Royal Navy; HNoMS Vidar (N52), a minelayer of the Royal Norwegian Navy; Nostromo SpeedPad n52, a computer gaming peripheral; Okamura N-52, a Japanese sport aircraft; Neodymium magnet grade for one of the strongest (N30-N55) types
Given a set of contigs, the N50 is defined as the sequence length of the shortest contig at 50% of the total assembly length. It can be thought of as the point of half of the mass of the distribution; the number of bases from all contigs longer than the N50 will be close to the number of bases from all contigs shorter than the N50. For example ...
A simple case of compression is the uniaxial compression induced by the action of opposite, pushing forces. Compressive strength for materials is generally higher than their tensile strength. However, structures loaded in compression are subject to additional failure modes, such as buckling, that are dependent on the member's geometry.
To emphasize the point, consider the issue of choosing a material for building an airplane. Aluminum seems obvious because it is "lighter" than steel, but steel is stronger than aluminum, so one could imagine using thinner steel components to save weight without sacrificing (tensile) strength.
These highly ordered heterostructures were believed to be stronger than simple mixtures. This theory was confirmed with Al/Cu and Al/Ag structures. After the formation of Al/Cu and Al/Ag, the research was extended to multilayer systems including Cu/Ni, TiN/VN, W/WN, Hf/HfN and more.