When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, [1] is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. [2] [3] [4] Thus it can be represented heuristically as

  3. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    The impulse response of a linear transformation is the image of Dirac's delta function under the transformation, analogous to the fundamental solution of a partial differential operator. It is usually easier to analyze systems using transfer functions as opposed to impulse responses. The transfer function is the Laplace transform of the impulse ...

  4. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    Impulse J produced from time t 1 to t 2 is defined to be [2] = ... Dirac delta function, mathematical abstraction of a pure impulse; Notes

  5. Impulse - Wikipedia

    en.wikipedia.org/wiki/Impulse

    Impulse (physics), in mechanics, the change of momentum of an object; the integral of a force with respect to time; Impulse noise (disambiguation) Specific impulse, the change in momentum per unit mass of propellant of a propulsion system; Impulse function, a mathematical function of an infinitely high amplitude and infinitesimal duration

  6. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula ⁡ := = for some given period . [1]

  7. Linear system - Wikipedia

    en.wikipedia.org/wiki/Linear_system

    This mathematical property makes the solution of modelling equations simpler than many nonlinear systems. For time-invariant systems this is the basis of the impulse response or the frequency response methods (see LTI system theory), which describe a general input function x(t) in terms of unit impulses or frequency components.

  8. Finite impulse response - Wikipedia

    en.wikipedia.org/wiki/Finite_impulse_response

    The result is a finite impulse response filter whose frequency response is modified from that of the IIR filter. Multiplying the infinite impulse by the window function in the time domain results in the frequency response of the IIR being convolved with the Fourier transform (or DTFT) of the window function. If the window's main lobe is narrow ...

  9. Linear response function - Wikipedia

    en.wikipedia.org/wiki/Linear_response_function

    Because of its many applications in information theory, physics and engineering there exist alternative names for specific linear response functions such as susceptibility, impulse response or impedance; see also transfer function. The concept of a Green's function or fundamental solution of an ordinary differential equation is closely related.