Search results
Results From The WOW.Com Content Network
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
Much more work is needed to find the volume if we use disc integration. First, we would need to solve y = 8 ( x − 1 ) 2 ( x − 2 ) 2 {\displaystyle y=8(x-1)^{2}(x-2)^{2}} for x . Next, because the volume is hollow in the middle, we would need two functions: one that defined an outer solid and one that defined the inner hollow.
An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).
Disc integration, also known in integral calculus as the disc method, is a method for calculating the volume of a solid of revolution of a solid-state material when integrating along an axis "parallel" to the axis of revolution. This method models the resulting three-dimensional shape as a stack of an infinite number of discs of varying radius ...
The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...
A portion of the curve x = 2 + cos(z) rotated around the z-axis A torus as a square revolved around an axis parallel to one of its diagonals.. A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1]
An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.
Volume forms can also be pulled back under covering maps, in which case they multiply volume by the cardinality of the fiber (formally, by integration along the fiber). In the case of an infinite sheeted cover (such as R → S 1 {\displaystyle \mathbb {R} \to S^{1}} ), a volume form on a finite volume manifold pulls back to a volume form on an ...