Search results
Results From The WOW.Com Content Network
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2.It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. [7] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds).
Phase behavior Triple point: 104 K (−169 °C), 120 Pa Critical point: 282.5 K (9.4 °C), 50.6 bar Std enthalpy change of fusion, Δ fus H o +3.35 kJ/mol Std entropy change
Acetylene (systematic name: ethyne) is the chemical compound with the formula C 2 H 2 and structure H−C≡C−H. It is a hydrocarbon and the simplest alkyne. [8] This colorless gas is widely used as a fuel and a chemical building block. It is unstable in its pure form and thus is usually handled as a solution. [9]
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with
Structural formula pentanoic acid: valeric acid valerianic acid butane-1-carboxylic acid: CH 3 (CH 2) 3 COOH 3-methylbutanoic acid: isovaleric acid isopentanoic acid delphinic acid β-methylbutiric acid 3-methylbutiric acid (CH 3) 2 CHCH 2 COOH 2-methylbutanoic acid: 2-methylbutiric acid: CH 3 CH 2 CH(CH 3)COOH 2,2-dimethylpropanoic acid ...
Table obtained from Lange's Handbook of Chemistry, 10th ed. Specific gravity is referenced to water at 15.6 °C. See also "Typical Freezing and Boiling Points of Aqueous Solutions of DOWTHERM SR-1 and DOWTHERM-SR4000" (PDF). Dow Chemical. Archived from the original (PDF) on 27 September 2007
The fugacity of a condensed phase (liquid or solid) is defined the same way as for a gas: = and = It is difficult to measure fugacity in a condensed phase directly; but if the condensed phase is saturated (in equilibrium with the vapor phase), the chemical potentials of the two phases are equal (μ c = μ g).