Search results
Results From The WOW.Com Content Network
A quadratic form with integer coefficients is called an integral binary quadratic form, often abbreviated to binary quadratic form. This article is entirely devoted to integral binary quadratic forms. This choice is motivated by their status as the driving force behind the development of algebraic number theory.
Note that there is a close relation between reducing binary quadratic forms and continued fraction expansion; one step in the continued fraction expansion of a certain quadratic irrationality gives a unary operation on the set of reduced forms, which cycles through all reduced forms in one equivalence class.
In mathematics, in number theory, Gauss composition law is a rule, invented by Carl Friedrich Gauss, for performing a binary operation on integral binary quadratic forms (IBQFs). Gauss presented this rule in his Disquisitiones Arithmeticae , [ 1 ] a textbook on number theory published in 1801, in Articles 234 - 244.
A mapping q : M → R : v ↦ b(v, v) is the associated quadratic form of b, and B : M × M → R : (u, v) ↦ q(u + v) − q(u) − q(v) is the polar form of q. A quadratic form q : M → R may be characterized in the following equivalent ways: There exists an R-bilinear form b : M × M → R such that q(v) is the associated quadratic form.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
In integral calculus, integration by reduction formulae is a method relying on recurrence relations. It is used when an expression containing an integer parameter , usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree , can't be integrated directly.
This L-function is analogous to the Riemann zeta function and the Dirichlet L-series that is defined for a binary quadratic form. It is a special case of a Hasse–Weil L-function. The natural definition of L(E, s) only converges for values of s in the complex plane with Re(s) > 3/2.