When.com Web Search

  1. Ads

    related to: differential formulas in calculus problems and solutions

Search results

  1. Results From The WOW.Com Content Network
  2. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Variational methods in general relativity, a family of techniques using calculus of variations to solve problems in Einstein's general theory of relativity; Finite element method is a variational method for finding numerical solutions to boundary-value problems in differential equations;

  3. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are solutions of linear differential equations (see Holonomic function). When physical phenomena are modeled with non-linear equations, they ...

  4. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    Even the fundamental questions of existence, uniqueness, and extendability of solutions for nonlinear differential equations, and well-posedness of initial and boundary value problems for nonlinear PDEs are hard problems and their resolution in special cases is considered to be a significant advance in the mathematical theory (cf. Navier ...

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.

  6. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    A solution to an initial value problem is a function that is a solution to the differential equation and satisfies y ( t 0 ) = y 0 . {\displaystyle y(t_{0})=y_{0}.} In higher dimensions, the differential equation is replaced with a family of equations y i ′ ( t ) = f i ( t , y 1 ( t ) , y 2 ( t ) , …

  7. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The exact solution of the differential equation is () =, so () =. Although the approximation of the Euler method was not very precise in this specific case, particularly due to a large value step size h {\displaystyle h} , its behaviour is qualitatively correct as the figure shows.

  8. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Calculus is of vital importance in physics: many physical processes are described by equations involving derivatives, called differential equations. Physics is particularly concerned with the way quantities change and develop over time, and the concept of the " time derivative " — the rate of change over time — is essential for the precise ...

  9. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    The study of these differential equations with constant coefficients dates back to Leonhard Euler, who introduced the exponential function e x, which is the unique solution of the equation f′ = f such that f(0) = 1. It follows that the n th derivative of e cx is c n e cx, and this allows solving homogeneous linear differential equations ...