Ads
related to: differential formulas in calculus problems and solutions
Search results
Results From The WOW.Com Content Network
Variational methods in general relativity, a family of techniques using calculus of variations to solve problems in Einstein's general theory of relativity; Finite element method is a variational method for finding numerical solutions to boundary-value problems in differential equations;
Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are solutions of linear differential equations (see Holonomic function). When physical phenomena are modeled with non-linear equations, they ...
Even the fundamental questions of existence, uniqueness, and extendability of solutions for nonlinear differential equations, and well-posedness of initial and boundary value problems for nonlinear PDEs are hard problems and their resolution in special cases is considered to be a significant advance in the mathematical theory (cf. Navier ...
Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.
A solution to an initial value problem is a function that is a solution to the differential equation and satisfies y ( t 0 ) = y 0 . {\displaystyle y(t_{0})=y_{0}.} In higher dimensions, the differential equation is replaced with a family of equations y i ′ ( t ) = f i ( t , y 1 ( t ) , y 2 ( t ) , …
The exact solution of the differential equation is () =, so () =. Although the approximation of the Euler method was not very precise in this specific case, particularly due to a large value step size h {\displaystyle h} , its behaviour is qualitatively correct as the figure shows.
Calculus is of vital importance in physics: many physical processes are described by equations involving derivatives, called differential equations. Physics is particularly concerned with the way quantities change and develop over time, and the concept of the " time derivative " — the rate of change over time — is essential for the precise ...
The study of these differential equations with constant coefficients dates back to Leonhard Euler, who introduced the exponential function e x, which is the unique solution of the equation f′ = f such that f(0) = 1. It follows that the n th derivative of e cx is c n e cx, and this allows solving homogeneous linear differential equations ...