Search results
Results From The WOW.Com Content Network
The most promising applications of topological insulators are spintronic devices and dissipationless transistors for quantum computers based on the quantum Hall effect [14] and quantum anomalous Hall effect. [62] In addition, topological insulator materials have also found practical applications in advanced magnetoelectronic and optoelectronic ...
The topological insulators and superconductors are classified here in ten symmetry classes (A,AII,AI,BDI,D,DIII,AII,CII,C,CI) named after Altland–Zirnbauer classification, defined here by the properties of the system with respect to three operators: the time-reversal operator , charge conjugation and chiral symmetry . The symmetry classes are ...
Typical examples include graphene, topological insulators, bismuth antimony thin films and some other novel nanomaterials, [1] [4] [5] in which the electronic energy and momentum have a linear dispersion relation such that the electronic band structure near the Fermi level takes the shape of an upper conical surface for the electrons and a ...
These are materials that present strong electronic correlations or some type of electronic order, such as superconducting or magnetic orders, or materials whose electronic properties are linked to non-generic quantum effects – topological insulators, Dirac electron systems such as graphene, as well as systems whose collective properties are ...
In a separate paper, Kane and Mele introduced a topological invariant which characterizes a state as trivial or non-trivial band insulator (regardless if the state exhibits or does not exhibit a quantum spin Hall effect). Further stability studies of the edge liquid through which conduction takes place in the quantum spin Hall state proved ...
Topological order in solid state systems has been studied in condensed matter physics since the discovery of integer quantum Hall effect.But topological matter attracted considerable interest from the physics community after the proposals for possible observation of symmetry-protected topological phases (or the so-called topological insulators) in graphene, [3] and experimental observation of ...
Mott insulator – Materials classically predicted to be conductors, that are actually insulators; Superconductor-insulator transition – Type of quantum phase transition; Topological insulator – State of matter with insulating bulk but conductive boundary
Stanene [1] [2] is a topological insulator, theoretically predicted by Shoucheng Zhang's group at Stanford, [further explanation needed] which may display dissipationless currents at its edges near room temperature. It is composed of tin atoms arranged in a single layer, in a manner similar to graphene. [3]