When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    The rectangular region at the bottom of the body is the domain of integration, while the surface is the graph of the two-variable function to be integrated. In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).

  3. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.

  4. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    In single-variable calculus, operations like differentiation and integration are made to functions of a single variable. In multivariate calculus, it is required to generalize these to multiple variables, and the domain is therefore multi-dimensional. Care is therefore required in these generalizations, because of two key differences between 1D ...

  5. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The (unproved) Jacobian conjecture is related to global invertibility in the case of a polynomial function, that is a function defined by n polynomials in n variables. It asserts that, if the Jacobian determinant is a non-zero constant (or, equivalently, that it does not have any complex zero), then the function is invertible and its inverse is ...

  6. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    A method by Zhonggang Zeng (2004), implemented as a MATLAB package, computes multiple roots and corresponding multiplicities of a polynomial accurately even if the coefficients are inexact. [3] [4] [5] The method can be summarized in two steps. Let be the given polynomial.

  7. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    Newton's method to find zeroes of a function of multiple variables is given by + = [()] (), where [()] is the left inverse of the Jacobian matrix of evaluated for .. Strictly speaking, any method that replaces the exact Jacobian () with an approximation is a quasi-Newton method. [1]

  8. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    To solve a matrix ODE according to the three steps detailed above, using simple matrices in the process, let us find, say, a function x and a function y both in terms of the single independent variable t, in the following homogeneous linear differential equation of the first order,

  9. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    In cases where the function in question has multiple roots, it can be difficult to control, via choice of initialization, which root (if any) is identified by Newton's method. For example, the function f ( x ) = x ( x 2 − 1)( x − 3)e −( x − 1) 2 /2 has roots at −1, 0, 1, and 3. [ 18 ]