Ads
related to: what causes spalling concrete floor
Search results
Results From The WOW.Com Content Network
Alkali–aggregate reaction is a term mainly referring to a reaction which occurs over time in concrete between the highly alkaline cement paste and non-crystalline silicon dioxide, which is found in many common aggregates. This reaction can cause the expansion of the altered aggregate, leading to spalling and loss of strength of concrete.
If concrete is exposed to very high temperatures very rapidly, explosive spalling of the concrete can result. In a very hot, very quick fire the water inside the concrete will boil before it evaporates. The steam inside the concrete exerts expansive pressure and can initiate and forcibly expel a spall. [23]
Oxide jacking has caused concrete spalling on walls of the Herbst Pavilion at Fort Mason Center in San Francisco. The expansive force of rusting, which may be called oxide jacking or rust burst, is a phenomenon that can cause damage to structures made of stone, masonry, concrete or ceramics, and reinforced with metal components.
ASTM C1293: "Test Method for Concrete Aggregates by Determination of Length Change of Concrete Due to Alkali-Silica Reaction". It is a long-term confirmation test (1 or 2 years) at 38 °C in a water-saturated moist atmosphere (inside a thermostated oven) with concrete prisms containing the aggregates to be characterised mixed with a high-alkali ...
This differential expansion causes sub-surface shear stress, in turn causing spalling. Extreme temperature change, such as forest fires, can also cause spalling of rock. This mechanism of weathering causes the outer surface of the rock to fall off in thin fragments, sheets or flakes, hence the name exfoliation or onion skin weathering.
Concrete cancer may refer to: Rebar corrosion and spalling of the concrete cover above rebar caused by the rust expansion and accelerated by chloride attack and ...
For ordinary Portland cement, it reacts with the calcium hydroxide in concrete to form calcium sulfate. This change simultaneously destroys the polymeric nature of calcium hydroxide and substitutes a larger molecule into the matrix causing pressure and spalling of the adjacent concrete and aggregate particles. [ 7 ]
When it reacts with concrete, it causes the slab to expand, lifting, distorting and cracking as well as exerting a pressure onto the surrounding walls which can cause movements significantly weakening the structure. Some infill materials frequently encountered in building fondations and causing sulfate attack are the following: [2] Red Ash