Search results
Results From The WOW.Com Content Network
Perchlorate compounds oxidize organic compounds, especially when the mixture is heated. The explosive decomposition of ammonium perchlorate is catalyzed by metals and heat. [14] As perchlorate is a weak Lewis base (i.e., a weak electron pair donor) and a weak nucleophilic anion, it is also a very weakly coordinating anion. [14]
Ammonium chloride is an inorganic chemical compound with the chemical formula N H 4 Cl, also written as [NH 4]Cl.It is an ammonium salt of hydrogen chloride.It consists of ammonium cations [NH 4] + and chloride anions Cl −.
Thermochemistry is the study of the heat energy which is associated with chemical reactions and/or phase changes such as melting and boiling. A reaction may release or absorb energy, and a phase change may do the same. Thermochemistry focuses on the energy exchange between a system and its surroundings in the form of heat. Thermochemistry is ...
A classical example is the decomposition of mercuric oxide to give oxygen and mercury metal. The reaction was used by Joseph Priestley to prepare samples of gaseous oxygen for the first time. When water is heated to well over 2,000 °C (2,270 K; 3,630 °F), a small percentage of it will decompose into OH, monatomic oxygen, monatomic hydrogen, O ...
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
In thermodynamics, the enthalpy of mixing (also heat of mixing and excess enthalpy) is the enthalpy liberated or absorbed from a substance upon mixing. [1] When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. [ 1 ]
If the temperature is low enough, that may be the case for practically all molecules. One then says that those degrees of freedom are "frozen". The molar heat capacity of the gas will then be determined only by the "active" degrees of freedom — that, for most molecules, can receive enough energy to overcome that quantum threshold. [12]
The most important elementary reactions are unimolecular and bimolecular reactions. Only one molecule is involved in a unimolecular reaction; it is transformed by isomerization or a dissociation into one or more other molecules. Such reactions require the addition of energy in the form of heat or light.