Search results
Results From The WOW.Com Content Network
[a] While processes in isolated systems are never reversible, [3] cyclical processes can be reversible or irreversible. [4] Reversible processes are hypothetical or idealized but central to the second law of thermodynamics. [3] Melting or freezing of ice in water is an example of a realistic process that is nearly reversible.
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy. The nonequilibrium thermodynamic state of living ...
The idea that processes that can occur naturally in the environment and act to locally decrease entropy must be identified has been applied in examinations of phosphate's role in the origin of life, where the relevant setting for abiogenesis is an early Earth lake environment. One such process is the ability of phosphate to concentrate ...
For any irreversible process, since entropy is a state function, we can always connect the initial and terminal states with an imaginary reversible process and integrating on that path to calculate the difference in entropy. Now reverse the reversible process and combine it with the said irreversible process.
Example of a real system modelled by an idealized process: PV and TS diagrams of a Brayton cycle mapped to actual processes of a gas turbine engine Thermodynamic cycles may be used to model real devices and systems, typically by making a series of assumptions to reduce the problem to a more manageable form. [ 2 ]
For a particular reversible process in general, the work done reversibly on the system, ,, and the heat transferred reversibly to the system, , are not required to occur respectively adiabatically or adynamically, but they must belong to the same particular process defined by its particular reversible path, , through the space of thermodynamic ...
First, it states that the microscopic detailed dynamics of particles and fields is time-reversible because the microscopic equations of motion are symmetric with respect to inversion in time ; Second, it relates to the statistical description of the kinetics of macroscopic or mesoscopic systems as an ensemble of elementary processes: collisions ...
The presence of an oxygenated atmosphere-hydrosphere surrounding an otherwise highly reducing solid earth is the most striking consequence of the rise of life on earth. Biological evolution and the functioning of ecosystems, in turn, are to a large degree conditioned by geophysical and geological processes.