Search results
Results From The WOW.Com Content Network
An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
Here we employ a method called "indirect expansion" to expand the given function. This method uses the known Taylor expansion of the exponential function. In order to expand (1 + x)e x as a Taylor series in x, we use the known Taylor series of function e x:
where the expansion is identical to that of Stirling's series above for !, except that is replaced with z − 1. [ 10 ] A further application of this asymptotic expansion is for complex argument z with constant Re( z ) .
If K is a field (such as the complex numbers), a Puiseux series with coefficients in K is an expression of the form = = + / where is a positive integer and is an integer. In other words, Puiseux series differ from Laurent series in that they allow for fractional exponents of the indeterminate, as long as these fractional exponents have bounded denominator (here n).
In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by The expansion is given by ( a + b + c ) n = ∑ i , j , k i + j + k = n ( n i , j , k ) a i b j c k , {\displaystyle (a+b+c)^{n}=\sum _{{i,j,k} \atop {i+j+k=n}}{n \choose i,j,k}\,a^{i}\,b^{\;\!j}\;\!c^{k},}
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.