When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Redshift - Wikipedia

    en.wikipedia.org/wiki/Redshift

    Determining the redshift of an object in this way requires a frequency or wavelength range. In order to calculate the redshift, one has to know the wavelength of the emitted light in the rest frame of the source: in other words, the wavelength that would be measured by an observer located adjacent to and comoving with the source.

  3. Color of chemicals - Wikipedia

    en.wikipedia.org/wiki/Color_of_chemicals

    The relationship between energy and wavelength is determined by the Planck-Einstein relation E = h f = h c λ {\displaystyle E=hf={\frac {hc}{\lambda }}} where E is the energy of the quantum ( photon ), f is the frequency of the light wave, h is the Planck constant , λ is the wavelength and c is the speed of light .

  4. Visible spectrum - Wikipedia

    en.wikipedia.org/wiki/Visible_spectrum

    The spectral colors from red to violet are divided by the notes of the musical scale, starting at D. The circle completes a full octave, from D to D. Newton's circle places red, at one end of the spectrum, next to violet, at the other. This reflects the fact that non-spectral purple colors are observed when red and violet light are mixed.

  5. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The wavelength (or equivalently, frequency) of the photon is determined by the difference in energy between the two states. These emitted photons form the element's spectrum. The fact that only certain colors appear in an element's atomic emission spectrum means that only certain frequencies of light are emitted.

  6. Balmer series - Wikipedia

    en.wikipedia.org/wiki/Balmer_series

    The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885. The visible spectrum of light from hydrogen displays four wavelengths , 410 nm , 434 nm, 486 nm, and 656 nm, that correspond to emissions of photons by electrons in excited states transitioning to the quantum level described by ...

  7. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.

  8. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    The four visible hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. The Balmer series includes the lines due to transitions from an outer orbit n > 2 to the orbit n' = 2. Named after Johann Balmer, who discovered the Balmer formula, an empirical equation to predict

  9. Spectral color - Wikipedia

    en.wikipedia.org/wiki/Spectral_color

    A rainbow is a decomposition of white light into all of the spectral colors. Laser beams are monochromatic light, thereby exhibiting spectral colors. A spectral color is a color that is evoked by monochromatic light, i.e. either a spectral line with a single wavelength or frequency of light in the visible spectrum, or a relatively narrow spectral band (e.g. lasers).