Ads
related to: how to factor out trinomials with 2 numbers and 1 negative 7 equals
Search results
Results From The WOW.Com Content Network
Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.
For the fourth time through the loop we get y = 1, z = x + 2, R = (x + 1)(x + 2) 4, with updates i = 5, w = 1 and c = x 6 + 1. Since w = 1, we exit the while loop. Since c ≠ 1, it must be a perfect cube. The cube root of c, obtained by replacing x 3 by x is x 2 + 1, and calling the
The next odd divisor to be tested is 7. One has 77 = 7 · 11, and thus n = 2 · 3 2 · 7 · 11. This shows that 7 is prime (easy to test directly). Continue with 11, and 7 as a first divisor candidate. As 7 2 > 11, one has finished. Thus 11 is prime, and the prime factorization is; 1386 = 2 · 3 2 · 7 · 11.
The FOIL rule converts a product of two binomials into a sum of four (or fewer, if like terms are then combined) monomials. [6] The reverse process is called factoring or factorization. In particular, if the proof above is read in reverse it illustrates the technique called factoring by grouping.
For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).
A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial. Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of ...
Let Δ be a negative integer with Δ = −dn, where d is a multiplier and Δ is the negative discriminant of some quadratic form. Take the t first primes p 1 = 2, p 2 = 3, p 3 = 5, ..., p t, for some t ∈ N. Let f q be a random prime form of G Δ with ( Δ / q ) = 1. Find a generating set X of G Δ.