Search results
Results From The WOW.Com Content Network
A modification of Lagged-Fibonacci generators. A SWB generator is the basis for the RANLUX generator, [19] widely used e.g. for particle physics simulations. Maximally periodic reciprocals: 1992 R. A. J. Matthews [20] A method with roots in number theory, although never used in practical applications. KISS: 1993 G. Marsaglia [21]
The square-free number 42 has factorization 2 × 3 × 7, or as an infinite product 2 1 · 3 1 · 5 0 · 7 1 · 11 0 · 13 0 ··· Thus the number 42 may be encoded as the binary sequence ...001011 or 11 decimal. (The binary digits are reversed from the ordering in the infinite product.)
Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated.
For example, squaring the number "1111" yields "1234321", which can be written as "01234321", an 8-digit number being the square of a 4-digit number. This gives "2343" as the "random" number. Repeating this procedure gives "4896" as the next result, and so on.
Prime number, prime power. Bonse's inequality; Prime factor. Table of prime factors; Formula for primes; Factorization. RSA number; Fundamental theorem of arithmetic; Square-free. Square-free integer; Square-free polynomial; Square number; Power of two; Integer-valued polynomial
As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter A contains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n−2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.