Search results
Results From The WOW.Com Content Network
The throttling process is a good example of an isoenthalpic process in which significant changes in pressure and temperature can occur to the fluid, and yet the net sum the associated terms in the energy balance is null, thus rendering the transformation isoenthalpic. The lifting of a relief (or safety) valve on a pressure vessel is an example ...
As shown before, throttling keeps h constant. E.g. throttling from 200 bar and 300 K (point a in fig. 2) follows the isenthalpic (line of constant specific enthalpy) of 430 kJ/kg. At 1 bar it results in point b which has a temperature of 270 K. So throttling from 200 bar to 1 bar gives a cooling from room temperature to below the freezing point ...
The flash evaporation of a single-component liquid is an isenthalpic process and is often referred to as an adiabatic flash. The following equation, derived from a simple heat balance around the throttling valve or device, is used to predict how much of a single-component liquid is vaporized.
In an isenthalpic process, the enthalpy is constant. [2] A horizontal line in the diagram represents an isenthalpic process. A vertical line in the h–s chart represents an isentropic process. The process 3–4 in a Rankine cycle is isentropic when the steam turbine is said to be an ideal one. So the expansion process in a turbine can be ...
Thermodynamic processes are named based on the effect they would have on the system (ex. isovolumetric: constant volume, isenthalpic: constant enthalpy). Even though in reality it is not necessarily possible to carry out an isentropic process, some may be approximated as such.
The work done on the piston in this case would be different due to the additional work required for the resistance of the friction. The work done due to friction would be the difference between the work done on these two process paths. Many engineers neglect friction at first in order to generate a simplified model. [1]
The liquid stream from the gas–liquid separator flows through a valve and undergoes a throttling expansion from an absolute pressure of 62 bar to 21 bar (6.2 to 2.1 MPa), which is an isenthalpic process (i.e., a constant-enthalpy process) that results in lowering the temperature of the stream from about −51 °C to about −81 °C as the ...
Q H = W + Q C = heat exchanged with the hot reservoir. η = W / (Q C + Q H) = thermal efficiency of the cycle If the cycle moves in a clockwise sense, then it is a heat engine that outputs work; if the cycle moves in a counterclockwise sense, it is a heat pump that takes in work and moves heat Q H from the cold reservoir to the hot reservoir.