Search results
Results From The WOW.Com Content Network
Like the integral of the first kind, the complete elliptic integral of the second kind can be computed very efficiently using the arithmetic–geometric mean. [1] Define sequences a n and g n, where a 0 = 1, g 0 = √ 1 − k 2 = k ′ and the recurrence relations a n + 1 = a n + g n / 2 , g n + 1 = √ a n g n hold.
The incomplete elliptic integral of the first kind is defined as, (,) = (),the second kind as (,) = (),and the third kind as (,,) = ( ()) ().The argument n of the third kind of integral is known as the characteristic, which in different notational conventions can appear as either the first, second or third argument of Π and furthermore is sometimes defined with the opposite sign.
known as the complete elliptic integral of the second kind, the perimeter can be expressed in terms of that function as simply P = 4 a E ( e 2 ) {\displaystyle P=4aE(e^{2})} . The integral used to find the area does not have a closed-form solution in terms of elementary functions .
where K and K′ are the complete elliptic integrals of the first kind for values satisfying k 2 + k′ 2 = 1, and E and E′ are the complete elliptic integrals of the second kind. This form of Legendre's relation expresses the fact that the Wronskian of the complete elliptic integrals (considered as solutions of a differential equation) is a ...
The duplication theorem can be used for a fast and robust evaluation of the Carlson symmetric form of elliptic integrals and therefore also for the evaluation of Legendre-form of elliptic integrals. Let us calculate R F ( x , y , z ) {\displaystyle R_{F}(x,y,z)} : first, define x 0 = x {\displaystyle x_{0}=x} , y 0 = y {\displaystyle y_{0}=y ...
The relation to elliptic integrals has mainly a historical background. Elliptic integrals had been studied by Legendre, whose work was taken on by Niels Henrik Abel and Carl Gustav Jacobi. Abel discovered elliptic functions by taking the inverse function of the elliptic integral function
The fundamental rectangle in the complex plane of . There are twelve Jacobi elliptic functions denoted by (,), where and are any of the letters , , , and . (Functions of the form (,) are trivially set to unity for notational completeness.) is the argument, and is the parameter, both of which may be complex.
If K(k) is the complete elliptic integral of the first kind, as a function of the elliptic modulus k, then = () If E( k ) is the complete elliptic integral of the second kind , as a function of the elliptic modulus k , then G = − 1 2 + ∫ 0 1 E ( k ) d k {\displaystyle G=-{\tfrac {1}{2}}+\int _{0}^{1}\mathrm {E} (k)\,dk}