Search results
Results From The WOW.Com Content Network
The diagram above shows a simplified budget of ocean carbon flows. It is composed of three simple interconnected box models, one for the euphotic zone, one for the ocean interior or dark ocean, and one for ocean sediments. In the euphotic zone, net phytoplankton production is about 50 Pg C each year. About 10 Pg is exported to the ocean ...
Marine phytoplankton mostly inhabit sunlit surface waters as photoautotrophs, and require nutrients such as nitrogen and phosphorus, as well as sunlight to fix carbon and produce oxygen. However, some marine phytoplankton inhabit the deep sea, often near deep sea vents, as chemoautotrophs which use inorganic electron sources such as hydrogen ...
It has been estimated that half of the world's oxygen is produced by phytoplankton. [ 7 ] [ 8 ] Larger autotrophs, such as the seagrasses and macroalgae ( seaweeds ) are generally confined to the littoral zone and adjacent shallow waters, where they can attach to the underlying substrate but still be within the photic zone .
The breakdown of phytoplankton in the environment depends on the presence of oxygen, and once oxygen is no longer in the bodies of water, ligninperoxidases cannot continue to break down the lignin. When oxygen is not present in the water, the time required for breakdown of phytoplankton changes from 10.7 days to a total of 160 days.
Microalgae, capable of performing photosynthesis, are important for life on earth; they produce approximately half of the atmospheric oxygen [2] and use the greenhouse gas carbon dioxide to grow photoautotrophically. "Marine photosynthesis is dominated by microalgae, which together with cyanobacteria, are collectively called phytoplankton."
Phytoplankton (/ ˌ f aɪ t oʊ ˈ p l æ ŋ k t ə n /) are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems.The name comes from the Greek words φυτόν (phyton), meaning 'plant', and πλαγκτός (planktos), meaning 'wanderer' or 'drifter'.
A decline in dissolved oxygen, and hence in the oxygen supply to the ocean interior, is a likely effect of the increase in stratification in the upper ocean. [15] Since oxygen plays a direct and important role in the cycles of carbon, nitrogen and many other elements such as phosphorus, iron and magnesium, de-oxygenation will have large ...
In OMZs oxygen concentration drops to levels <10 nM at the base of the oxycline and can remain anoxic for over 700 m depth. [7] This lack of oxygen can be reinforced or increased due to physical processes changing oxygen supply such as eddy-driven advection, [7] sluggish ventilation, [8] increases in ocean stratification, and increases in ocean temperature which reduces oxygen solubility.