When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    The convolution of and is written , denoting the operator with the symbol . [B] It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted.

  3. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  4. List of convolutions of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_convolutions_of...

    In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...

  6. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  7. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.

  8. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function , then the characteristic function is the Fourier transform (with sign reversal) of the probability density function.

  9. Convolution power - Wikipedia

    en.wikipedia.org/wiki/Convolution_power

    Many applications of the convolution power rely on being able to define the analog of analytic functions as formal power series with powers replaced instead by the convolution power. Thus if F ( z ) = ∑ n = 0 ∞ a n z n {\displaystyle \textstyle {F(z)=\sum _{n=0}^{\infty }a_{n}z^{n}}} is an analytic function, then one would like to be able ...