When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    An N-point DFT is expressed as the multiplication =, where is the original input signal, is the N-by-N square DFT matrix, and is the DFT of the signal. The transformation matrix W {\displaystyle W} can be defined as W = ( ω j k N ) j , k = 0 , … , N − 1 {\displaystyle W=\left({\frac {\omega ^{jk}}{\sqrt {N}}}\right)_{j,k=0,\ldots ,N-1 ...

  3. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    [A] [1] An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all ...

  4. Discrete Fourier transform over a ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform...

    One can ask whether the DFT matrix is unitary over a finite field. If the matrix entries are over F q {\displaystyle F_{q}} , then one must ensure q {\displaystyle q} is a perfect square or extend to F q 2 {\displaystyle F_{q^{2}}} in order to define the order two automorphism x ↦ x q {\displaystyle x\mapsto x^{q}} .

  5. Chirp Z-transform - Wikipedia

    en.wikipedia.org/wiki/Chirp_Z-transform

    (The other algorithm for FFTs of prime sizes, Rader's algorithm, also works by rewriting the DFT as a convolution.) It was conceived in 1968 by Leo Bluestein. [7] Bluestein's algorithm can be used to compute more general transforms than the DFT, based on the (unilateral) z-transform (Rabiner et al., 1969). Recall that the DFT is defined by the ...

  6. Cooley–Tukey FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm

    The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).

  7. Split-radix FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Split-radix_FFT_algorithm

    The base cases of the recursion are N=1, where the DFT is just a copy =, and N=2, where the DFT is an addition = + and a subtraction =. These considerations result in a count: 4 N log 2 ⁡ N − 6 N + 8 {\displaystyle 4N\log _{2}N-6N+8} real additions and multiplications, for N >1 a power of two.

  8. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    The DTFT itself is a continuous function of frequency, but discrete samples of it can be readily calculated via the discrete Fourier transform (DFT) (see § Sampling the DTFT), which is by far the most common method of modern Fourier analysis. Both transforms are invertible.

  9. Goertzel algorithm - Wikipedia

    en.wikipedia.org/wiki/Goertzel_algorithm

    The Goertzel algorithm is a technique in digital signal processing (DSP) for efficient evaluation of the individual terms of the discrete Fourier transform (DFT). It is useful in certain practical applications, such as recognition of dual-tone multi-frequency signaling (DTMF) tones produced by the push buttons of the keypad of a traditional analog telephone.