Search results
Results From The WOW.Com Content Network
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
Most two-sample t-tests are robust to all but large deviations from the assumptions. [22] For exactness, the t-test and Z-test require normality of the sample means, and the t-test additionally requires that the sample variance follows a scaled χ 2 distribution, and that the sample mean and sample variance be statistically independent ...
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
The test is named after Frank Wilcoxon (1892–1965) who, in a single paper, proposed both it and the rank-sum test for two independent samples. [3] The test was popularized by Sidney Siegel (1956) in his influential textbook on non-parametric statistics. [4] Siegel used the symbol T for the test statistic, and consequently, the test is ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for comparing two independent samples would not be appropriate). That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared.
If there is interest in the marginal probability of obtaining a tail, only the number T out of the 100 flips that produced a tail needs to be recorded. But T can also be used as a test statistic in one of two ways: the exact sampling distribution of T under the null hypothesis is the binomial distribution with parameters 0.5 and 100.