When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty (c. 1850 BC): = (+ +), where a and b are the base and top side lengths, and h is the height.

  3. Prism (geometry) - Wikipedia

    en.wikipedia.org/wiki/Prism_(geometry)

    Right Prism. A right prism is a prism in which the joining edges and faces are perpendicular to the base faces. [5] This applies if and only if all the joining faces are rectangular. The dual of a right n-prism is a right n-bipyramid. A right prism (with rectangular sides) with regular n-gon bases has Schläfli symbol { }×{n}.

  4. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    Coxeter, Longuet-Higgins & Miller (1954) define uniform polyhedra to be vertex-transitive polyhedra with regular faces. They define a polyhedron to be a finite set of polygons such that each side of a polygon is a side of just one other polygon, such that no non-empty proper subset of the polygons has the same property.

  5. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    If two opposite faces become squares, the resulting one may obtain another special case of rectangular prism, known as square rectangular cuboid. [b] They can be represented as the prism graph. [3] [c] In the case that all six faces are squares, the result is a cube. [4]

  6. Wigner–Seitz cell - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_cell

    The Wigner–Seitz cell of the primitive hexagonal lattice is the hexagonal prism. In mathematics, it is known as the hexagonal prismatic honeycomb . The shape of the Wigner–Seitz cell for any Bravais lattice takes the form of one of the 24 Voronoi polyhedra.

  7. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    Right rhombic prism: it has two rhombic faces and four congruent rectangular faces. Note: the fully rhombic special case, with two rhombic faces and four congruent square faces ( a = b = c ) {\displaystyle (a=b=c)} , has the same name, and the same symmetry group (D 2h , order 8).

  8. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.

  9. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    Hyperboloid of one sheet. Solid geometry or stereometry is the geometry of three-dimensional Euclidean space (3D space). [1] A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior.